Series expansions in p-adic and other non-archimedean fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LINEAR SERIES OVER REAL AND p-ADIC FIELDS

We note that the degeneration arguments given by the author in [5] to derive a formula for the number of maps from a general curve C of genus g to P with prescribed ramification also yields weaker results when working over the real numbers or p-adic fields. Specifically, let k be such a field: we see that given g, d, n, and e1, . . . , en satisfying P i (ei − 1) = 2d − 2 − g, then there exists ...

متن کامل

p-ADIC FORMAL SERIES AND PRIMITIVE POLYNOMIALS OVER FINITE FIELDS

In this paper, we investigate the Hansen-Mullen conjecture with the help of some formal series similar to the Artin-Hasse exponential series over p-adic number fields and the estimates of character sums over Galois rings. Given n we prove, for large enough q, the Hansen-Mullen conjecture that there exists a primitive polynomial f(x) = xn − a1xn−1 + · · ·+ (−1)an over Fq of degree n with the m-t...

متن کامل

Global Newton Iteration over Archimedean and non-Archimedean Fields

In this paper, we study iterative methods on the coefficients of the rational univariate representation (RUR) of a given algebraic set, called global Newton iteration. We compare two natural approaches to define locally quadratically convergent iterations: the first one involves Newton iteration applied to the approximate roots individually and then interpolation to find the RUR of these approx...

متن کامل

ON p-ADIC POWER SERIES

We obtained the region of convergence and the summation formula for some modified generalized hypergeometric series (1.2). We also investigated rationality of the sums of the power series (1.3). As a result the series (1.4) cannot be the same rational number in all Zp. 1991 Mathematics Subject Classification: 40A30,40D99

متن کامل

Quantifier Elimination in p-adic Fields

We present a tutorial survey of quantifier-elimination and decision procedures in p-adic :fieIds. The p-adic :fieIds are studied in the (so-called) P,,-formalism of Angus Macintyre, for whieh motivation is provided through a rieh body of analogies with real-closed :fields. Quantifier-elimination and decision procedures are described proceeding via a Cylindrical Algebraic Decomposition of affine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1989

ISSN: 0022-314X

DOI: 10.1016/0022-314x(89)90086-3